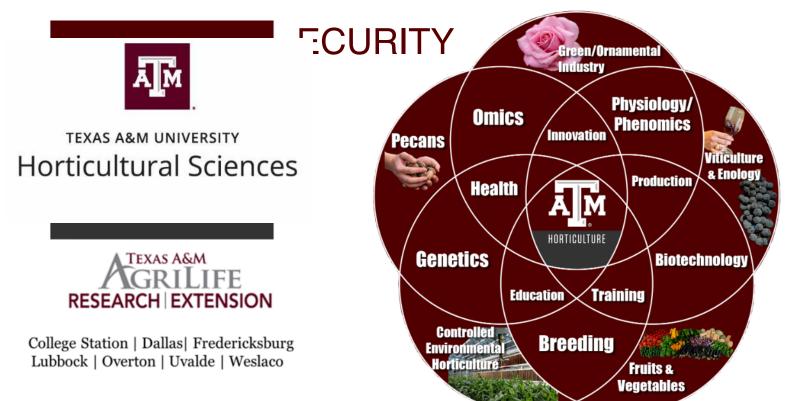
An Update on Pecan Research

TEXAS A&M UNIVERSITY Horticultural Sciences

College Station | Dallas| Fredericksburg Lubbock | Overton | Uvalde | Weslaco


Amit Dhingra, Ph.D. Head and Professor Department of Horticultural Sciences Texas A&M University

Department Head

SUSTAINABILITY I WELLNESS I FOOD

SUSTAINABILITY

PROFITABILITY

Our Research, Extension and Teaching are dedicated towards generating knowledge, tools and technologies to ensure the economic viability of our food systems.

SUSTAIN HORTICULTURE INDUSTRIES

As we work to replace ourselves, we are committed to developing the next generation of industry leaders.

ENVIRONMENT

We are committed to developing and disseminating knowledge to be the best stewards of our soils and the environment.

WELLNE

Asense of community. Waldinger, the director of the Harvard Study of Adult Development, said in a viral 2015 "TED Talk" released in 2015, that "good relationships keep us happier and healthier."

TEXAS A&M SCIENCE & BUSINESS & ARTS & CAMPUS HEALTH & COVID-19 TODAY STECH GOVERNMENT HUMANITIES LIFE ENVIRONMENT

Subscribe Press Room

HEALTH & ENVIRONMENT

The Positive Effects Of Gardening On Mental Health

Experts say working with plants offers a host of psychological and social benefits. By Paul Schattenberg, Texas A&M AgriLife Communications • MAY 18, 2022

FOOD SECURITY

Horticulture permanent crops require less input per calorie generated and are nutritious as well.

Scientist. Teacher. Humanitarian. Nobel Laureate. Father of the Green Revolution. Those terms describe Dr. Norman Borlaug, who was a distinguished professor of international agriculture at Texas A&M University, but they can't possibly capture the magnitude of his accomplishments.

TEXAS A&M

"Some credit him with saving more human lives than any other person in history."

Bruce Alberts, President of the National Academy of Scien

INSTITUTE FOR ADVANCING HEALTH THROUGH AGRICULTURE

Luis Cisneros, Ph.D.	А	GRILIFE TOD	AY	Search
ENVIRONMENT	FARM & RANCH	LAWN & GARDEN	LIFE & HEALTH	SCIENCE & TECH

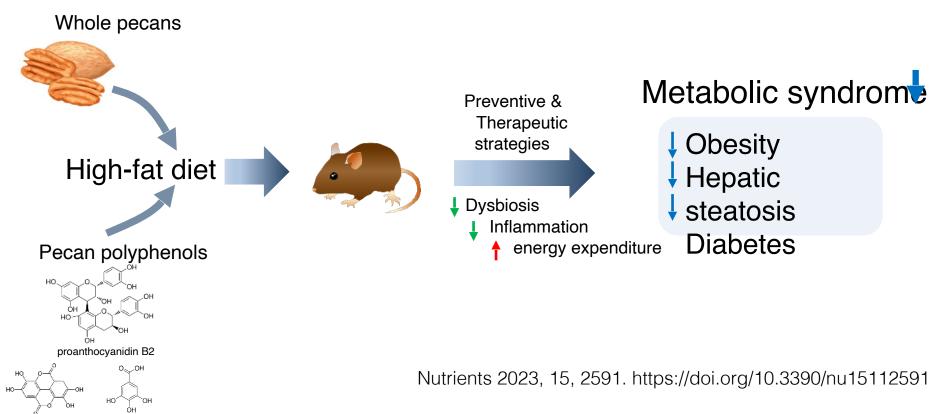
LIFE & HEALTH

Pecans give obesity and diabetes a slim chance

Study shows the health benefits of pecans, which can curb obesity and reduce inflammation

JULY 28, 2023

Article


Pecans and Its Polyphenols Prevent Obesity, Hepatic Steatosis and Diabetes by Reducing Dysbiosis, Inflammation, and Increasing Energy Expenditure in Mice Fed a High-Fat Diet

Claudia Delgadillo-Puga ^{1,*,†}, Ivan Torre-Villalvazo ^{2,†}, Lilia G. Noriega ², Leonardo A. Rodríguez-López ², Gabriela Alemán ², Erik A. Torre-Anaya ², Yonatan Y. Cariño-Cervantes ¹, Berenice Palacios-Gonzalez ³, Janette Furuzawa-Carballeda ⁴, Armando R. Tovar ² and Luis Cisneros-Zevallos ^{5,*}

Nutrients 2023, 15, 2591. https://doi.org/10.3390/nu15112591

Hydrolizable tannins: ellagic/gallic acid derivatives

Monte Nesbitt, Ph.D.

Ongoing Research Studies

Long-term, ongoing studies:

- 1. Comparison of low input and high input annual management in 70-year old trees.
- 2. Pecan variety studies. The following 17 varieties are under evaluation for disease resistance, yield, and nut quality: Pawnee, Waco, Caddo, Nacono, Oconee, Mandan, Lakota, Apalachee, Kanza, Avalon, Kalos, Fritz, Fayette, Excel, Eclipse, Ellis, Woodmen. We have plans to expand this continually adding ARS releases and other new things that people bring to our attention. Avalon and Kalos are the latest releases from UGA.

Product testing: Small trials funded by companies seeking product efficacy data. I have two this year—one is a humic acid soil product; the other is a foliar kelp treatment.

Monte Nesbitt, Ph.D.

Ongoing Research Studies

Soil health: Last year we initiated a randomized and replicated trial investigating effects of synthetic and organic/Omri-approved post emergence herbicides and synthetic preemergence herbicides on soil health status.

Nitrogen tissue status of alternate bearing Lakota pecan trees: Comparison of leaf, stem and root nitrogen status of Onyear vs Off-year cropping trees; a study aimed at identifying optimal soil N fertilizer timing and if stored N plays a role in early spring growth.

Plant Pathology Dept. trials-Dr. Young Ki Jo has fungicide trials at the Texas A&M Orchard. He has two trials—one is typical product trial; another is focused on biological or low-impact chemistries that allow for livestock grazing. He has one graduate student working on Pecan Leaf Dieback disease epidemiology in the orchard as well.

Professor and Scientist

TAMU Research Team

June Labbancz (Ph.D.) Plastid/Pecan Biology

Amanda Birnbaum (Ph.D.) Soil amendment

Rishi Ghogare, Ph.D. Research Scientist

Seanna Hewitt, Ph.D. Research Scientist

TEXAS A&M UNIVERSITY Horticultural Sciences

Trishia Nguyen Undergraduate Researcher

Katie Toomey Former Undergraduate Researcher

William Troxel Former Undergraduate Researcher

Trees For the Future Grant

Primary Goals:

- Probe the genetic basis of climate adaptation and cultivar-climate mismatches
- 2. Analyze **pecan water relations** and responses to salinity and drought stress

- 3. Explore biological interactions of microbes with pecan
- 4. Identify gene networks for flowering and nut traits
- 5. Determine genetics of growth and vigor traits

Trees For The Future SCRI Grant #2022-51181-38332

www.ars.usda.gov

The Genetic Basis of Pecan Nut Traits

Question:

 What genes and proteins are responsible for the differences in nut size, maturity timing and nutritional quality between two pecan cultivars?

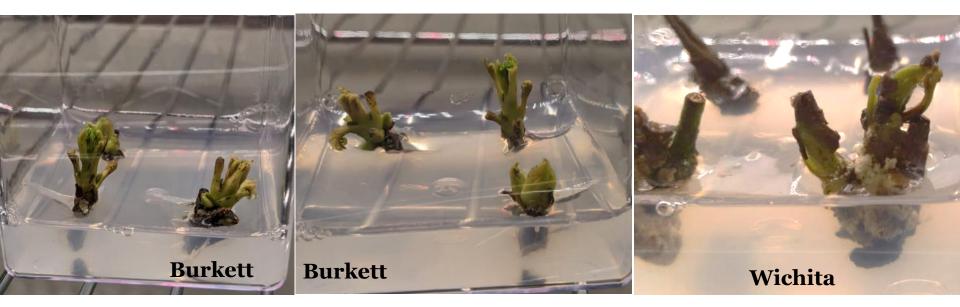

Collaborators – Chatwin and Dhingra

TEXAS A&M UNIVERSITY Horticultural Sciences

Agricultural

'Mahan'

- Mississippi Seedling
- 30-60 Nuts per pound
- Large oblong nut
- Thin shell
- Late Maturity (Early Nov.)



'Tiny Tim'

- Missouri Native
- 180-200 Nuts per pound
- Small round nut
- Thick shell
- Early Maturity (Early Sept.)

www.ars.usda.gov

Establishment of *in vitro* cultures

Thank you, Larry Don Womack

Understanding the impact of crop-residuederived biochar on root associated-microbiome function and plant health

Elvir Tenic M.S. Horticulture

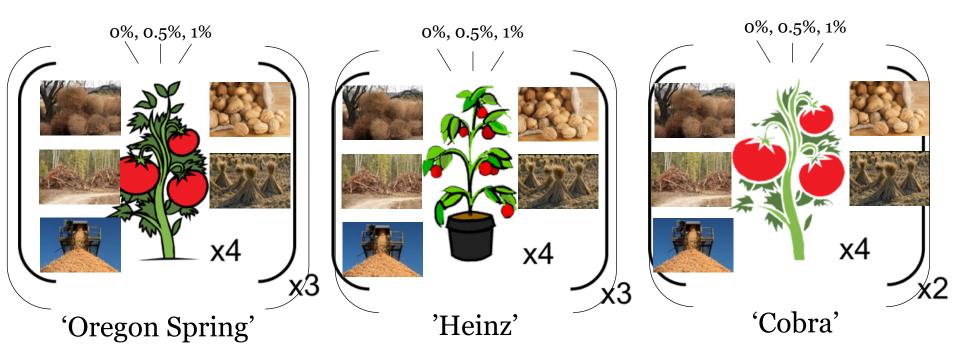
WASHINGTON STATE

Daylen Isaac M.S. student

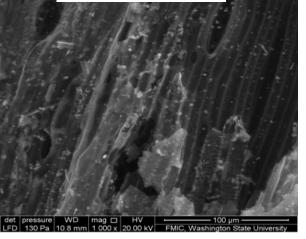
Seanna Hewitt, Ph.D. Post-doctoral Scientist

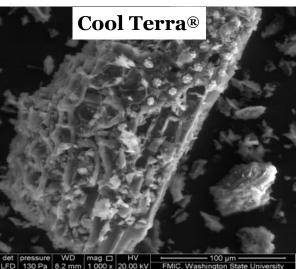
David Drinkard, VP Biomass Processing Qualterra

Funding


texas a&m university Horticultural Sciences Western Sustainable Ag Research and Education Department of Horticulture, WSU

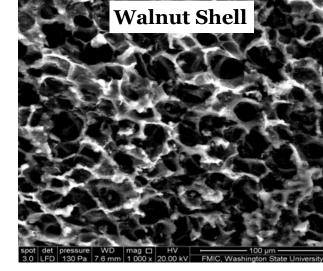
Does the source of biomass or the genetic background impact plant performance?

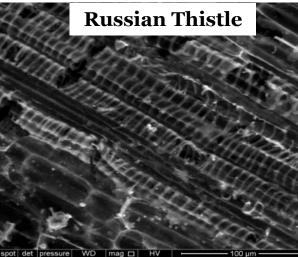

Experimental Design



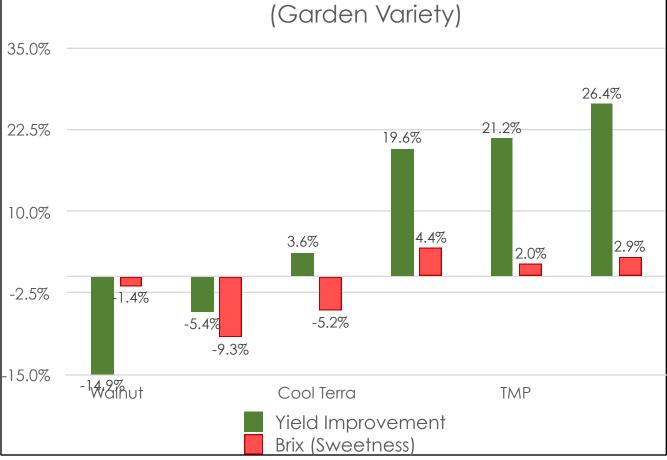
Elvir T, Daylen I, Rishikesh G, Amit D: Variability in Fruit Yield and Quality of Genetically Diverse Tomato Cultivars in Response to Different Biochars. *bioRxiv 2020:2020.2006.2028.176487*.


Ryegrass Straw





Thermomechanical Pulp



spot det pressure WD mag □ HV → 100 μm → 100 μm → 100 μm

Yield and Brix

Oregon spring

Elvir T, Daylen I, Rishikesh G, Amit D: Variability in Fruit Yield and Quality of Genetically Diverse Tomato Cultivars in Response to Different Biochars. *bioRxiv 2020:2020.2006.2028.176487*.

Trial Dates	Sources of Variation	Plant Wt	YPP ¹	Citrate	Malate	Glc	Fru
mo/d/yr to mo/d/yr levels of or the 3- cs of three soil n plant dry	Cultivar (C) Biochar (B) Rate (R) C x B C x R B x R C x B x R	0.001 ns ² 0.05 ns ns ns ns ns	0.001 ns 0.001 ns 0.005 ns ns	$\begin{array}{c} 0.001 \\ 0.001 \\ 0.002 \\ 0.001 \\ 0.001 \\ 0.02 \\ 0.002 \end{array}$	0.001 0.001 ns 0.001 0.001 0.001 0.001	0.001 0.001 0.04 0.001 0.001 ns 0.04	0.001 0.001 0.003 0.002 0.001 ns 0.04
ant (YPP), uitsoutgarto o cultitatas : the (ground) te.	Cultivar (C) Biochar (B) Rate (R) C x B C x R B x R C x B x R C x B x R	0.001 ns ns ns ns ns ns ns	0.001 ns 0.03 ns 0.008 ns ns	0.001 0.02 0.03 ns 0.001 0.001 ns	0.001 0.001 0.002 0.001 0.005 0.001 0.001	0.001 0.001 ns 0.03 0.003 0.001 0.001	0.001 0.001 ns 0.001 ns 0.001 0.001

Sources of variation and levels of significance (P-values) for the 3way ANOVA of the effects of three cultivars and six biochar soil amendments (3 rates) on plant dry weight, fruit yield per plant (YPP), fruit organic acid, and fruit sugarto concentrations of tomato cultivars grown in the greenhouse.

There is a significant interaction between the cultivar (genetic background) or biochar type or rate.

Elvir T, Daylen I, Rishikesh G, Arthi Dy var abirty mything for anti-outanty of the start of the

Feedstock Source

Crop Residue

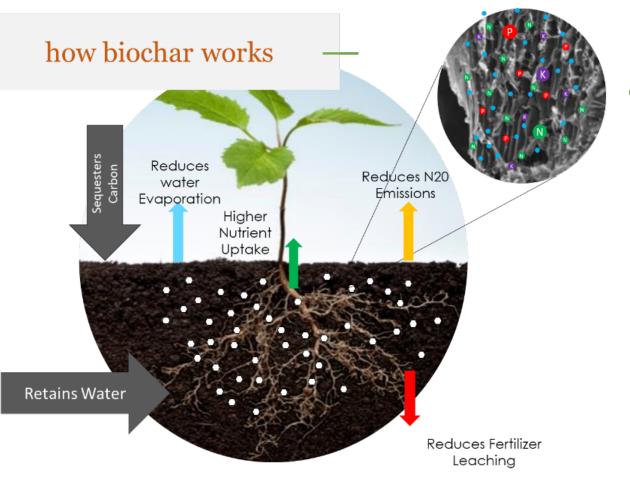
Soft Wood - pruned

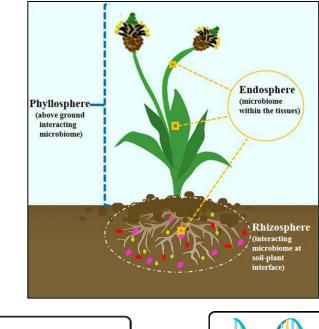
Hard Wood

Biochar – Things to Remember

- Not all biochar is created equal
- Check the chemical composition of the biochar
- Ensure you can get the same quality of biochar
 consistency across multiple batches

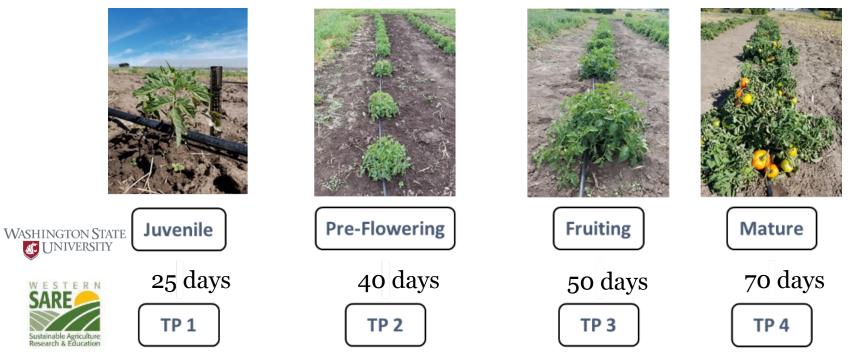
								Account	
Cont	trol Labo	ratori	and the second se					Account	Not
Con	and Labo	aton	10.228					Batch:	
43 Hargar Wa Watson elle, C								MAR 20	
								CODE	
712 601 7343 Rec 631 7243	5422 185							DioChar	
	Tim Farley								
	Ag Greegy Sala								
	7921 E. Broady Spokane Valley		~						
	spectane valley	100.0041	-						
	Date Received		3/6/2020						
	Sample ID:			-12 New Dmr					
	Lab ID. Namber		0080192-02				-		
		100111100		inless Stated		Tests for Certificat	Method		
Molshare (firm	(sinder a large		Dry source	17		The section of	ASTN D176		-
Daik Deceity				8.3		biou R	101110110		~~
Departer Carls				61.7		Shed hand the marks	Dry Combre	ASIMI	148/8
Hydrogen/Ca	tion (1:0)			0.55	0.7 Max	Molar Ratio	If dry combu	atton/C()	(evode
Total Ash				41.0		Not failed day mass.	ASTN D-17	12-64	
Total Natiogen	n			1.82		% of total dry mass	Dry Combus		
pH value				11,17		units	4.11USCC.x		
	ductivity (EC28			3,780		dG/m	4.10USOCx		dich .
	Value as GaOO	59		16.0		9C+008	AGAC 955 E		
Carbonates () Buttone Aut	88-08003)			1.2		%C#003	ASTN D 432 ASTN D 524		
Burlace Area	Constation			1.3		m2/s dry	G C	12-180	
	a dry unless stat	-	Range of	Reporting		Particle Size Distribu			
			Max, Levels	Unit (ppm)	Method		Results	Units	Metro
Arsenic	(Ap)	0.5	13 to 103	0.30		< 0.5mm	52.7	percent	F
Contractor	0.00	NO	14 14 20	0.36	- a	D.D. Tenne	210.3	present	
Chromlum	(01)	1.6	93 to 1200	0.30		1-2mm	16.5	percent	F
Cobalt	(Co)		34 to 103	0.36		2-4mm		percent.	
Copper	(Cu)		145 to 6000	0.38		4-iimm		percent	F
Lead	(***)		121 to 300	0.15		8-16mm		percent	
Molybdenum	(Ma) (Ha)	0.0	5 to 75	0.36	PEN ZIZI	16-25 mm		percent	5
Nickel	IND		47 to 420	0.10		-50mm		percent.	- 2
Selectars	(3e)	ND	2 to 200	0.30		Ratio Sol Enhances			_
Zha	(20)		416 to 7400	0.76		Total (K)	05433		
Paran	(8)	4.0	Deplaration	2.81	TNECC	Total (P)		make	Ē
Chlorine	(00)	2571	Declaration	20.0	TWECC	Americania (NH4-N)	6.5	naka	A
Sodium	(Na)	1291	Declaration	201.1	E .	Nitrate (NOD-N)		maka	
lane.	0.00		Destaution	10.1		Digarda (Dig N)		1111	Cade:
Manganese			Declaration	0.30		Volatile Matter	17.4	percent	dv D
	for "not detecte								
	Rayment & Hig		G			Area Correlation Bar			
	ASTM 01762-8 EPA30500 CPA			& Thiele's 20 CPA3050B/C		Analytical Options for	Blochar Adver	piton and	Surface /
	ARTM II 2802 0			LPA3050B/C	FA 6020				
	no-mid 7882								et No.0




Biochar treatment

What is the underlying reason for the increased above-ground biomass across different plant species?

- Improves soil structure
- Enhanced microbial activity
- Reduces water utilization
- Optimizes Nutrients
- Bigger, better crops



How is the plant responding?

Impact of Biochar on Plant-Soil Microbiome Interaction Metatranscriptome study

Biochar Application

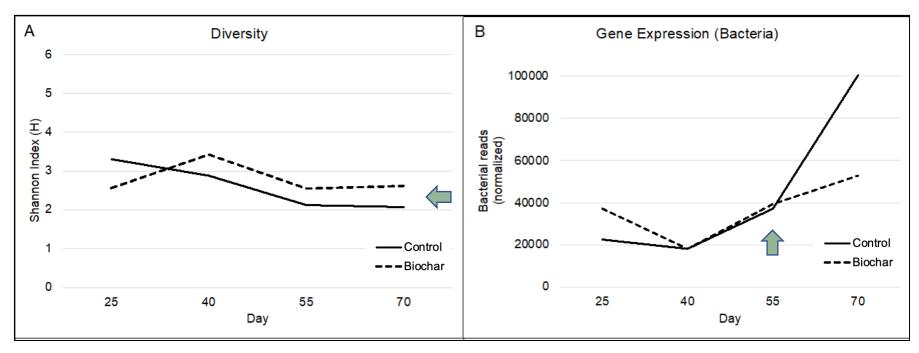
Soil before BC incorporation

Soil after BC incorporation

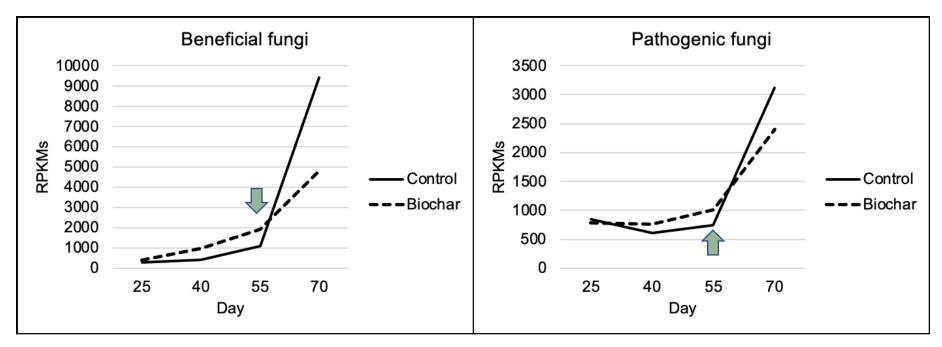
Planting tomato plants

Experimental Procedures

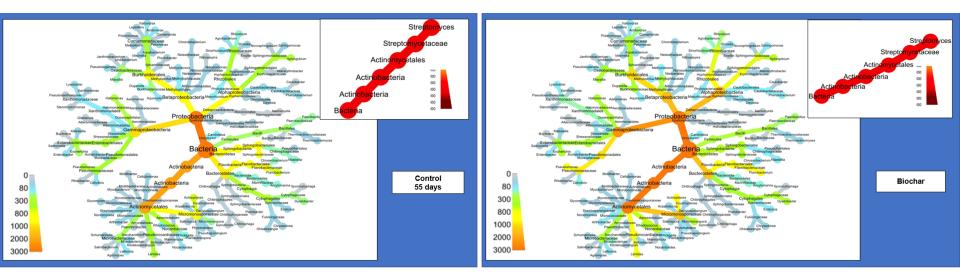
Planting tomato plants



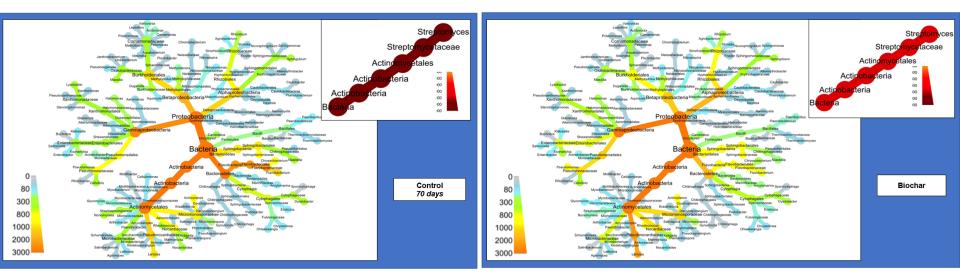
TP1 - 40 days old


Tomato root for sampling

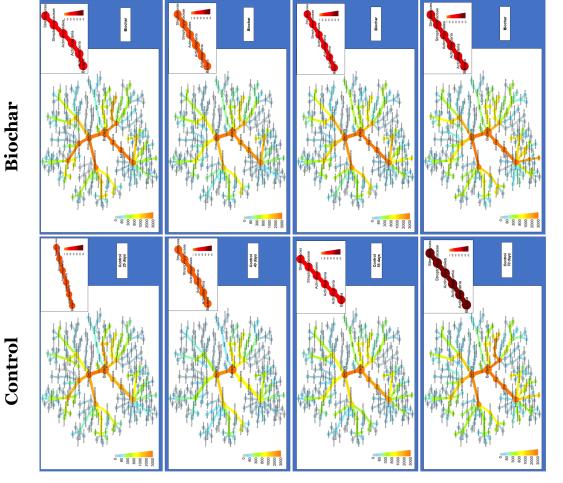
Functional Diversity (Metatranscriptomics)


Rhizosphere microbial diversity (A); bacterial functional diversity (B);

Fungal Metatranscriptome



Expression of beneficial (A) and pathogenic (B) soil fungi.


Metatranscriptomics: Time Point 3 – Day 55 Transition to Fruiting (Heat Tree Map)

Metatranscriptomics: Time Point 4 – Day 70 Full Maturity (Heat Tree Map)

- Enrichment of beneficial microbial function
- Reduction of microbial competition for Carbon at full maturity – more Carbon for the plant
- Improved communication between the plant and the rhizosphere microbial community

Microbial – Functional Enrichments

			С	Control			В	io	ch	\mathbf{ar}	Control				Bioch			ar
GO Term	GO Name	GO Category	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
GO:0005488	binding	MOLECULAR																
GO:0043167	ion binding	MOLECULAR																
GO:0003824	catalytic activity	MOLECULAR																
GO:0008152	metabolic process	BIOLOGICAL																
GC:0006807	nitrogen compound metabolic process	BIOLOGICAL																_
GO:0016491	oxidoreductase activity	MOLECULAR																
GO:0043169	cation binding	MOLECULAR																
GO:0046872	metal ion binding	MOLECULAR																
GO:0009058	biosynthetic process	BIOLOGICAL																
GC:0043170	macromolecule metabolic process	BIOLOGICAL																_
GO:0071704	organic substance metabolic process	BIOLOGICAL																
G C:0044238	primary metabolic process	BIOLOGICAL																
GO:1901576	organic substance biosynthetic process	BIOLOGICAL																
GO:1901566	organonitrogen compound biosynthetic process	BIOLOGICAL																
GO:1901564	organonitrogen compound metabolic process	BIOLOGICAL																
G 0:0043604	amide biosynthetic process	BIOLOGICAL																
G O:0043603	amide metabolic process	BIOLOGICAL																
GO:0044237	cellular metabolic process	BIOLOGICAL																
GO:0034641	cellular nitrogen compound metabolic process	BIOLOGICAL																_
GO:0044271	cellular nitrogen compound biosynthetic process	BIOLOGICAL																
GO:0009987	cellular process	BIOLOGICAL																_
G O:0043043	peptide biosynthetic process	BIOLOGICAL																_
G O:0006518	peptide metabolic process	BIOLOGICAL																
GO:0044249	cellular biosynthetic process	BIOLOGICAL																
GO:0010467	gene expression	BIOLOGICAL																
G 0:0009059	macromolecule biosynthetic process	BIOLOGICAL																
GO:1901363	heterocyclic compound binding	MOLECULAR																
GO:0097159	organic cyclic compound binding	MOLECULAR																
GO:0006412	translation	BIOLOGICAL																
	protein metabolic process	BIOLOGICAL																
G O:0003676	nucleic acid binding	MOLECULAR																
G O:0051234	establishment of localization	BIOLOGICAL																
GO:0051179	localization	BIOLOGICAL																
GO:0006810		BIOLOGICAL																
	structural constituent of ribosome	MOLECULAR																
G O:0005198	structural molecule activity	MOLECULAR																
GO:0016787	hydrolase activity	MOLECULAR																
GO:0016740	transferase activity	MOLECULAR																
GO:0036094	small molecule binding	MOLECULAR																

Plant roots – Functional Enrichments

			Co	nt	ro		Bi	oc	ha	
GOTerm	GOName	GO Category	/ 1	12	3	4	1	2 r	3 4	4
GO:0010467	gene expression	BIOLOGICAL		1				1		
GO:0006412	translation	BIOLOGICAL								
GO:0006518	peptide metabolic process	BIOLOGICAL								
GO:0009059	macromolecule biosynthetic process	BIOLOGICAL								1
GO:0043043	peptide biosynthetic process	BIOLOGICAL								1
GO:0043603	amide metabolic process	BIOLOGICAL								1
GO:0043604	amide biosynthetic process	BIOLOGICAL								1
GO:0044249	cellular biosynthetic process	BIOLOGICAL							_	1
GO:0044271	cellular nitrogen compound biosynthetic proces	BIOLOGICAL								
GO:1901566	organonitrogen compound biosynthetic process	BIOLOGICAL							_	
GO:1901576	organic substance biosynthetic process	BIOLOGICAL							_	
GO:0005198	structural molecule activity	MOLECULA	1							
GO:0043170	macromolecule metabolic process	BIOLOGICAL								
GO:0008152	metabolic process	BIOLOGICAL								1
GO:0019538	protein metabolic process	BIOLOGICAL								
GO:1901564	organonitrogen compound metabolic process	BIOLOGICAL								
GO:0009058	biosynthetic process	BIOLOGICAL								1
GO:0009987	cellular process	BIOLOGICAL								
GO:0044237	cellular metabolic process	BIOLOGICAL								
GO:0005488	binding	MOLECULAR	2							1
GO:0003723	RNA binding	MOLECULAR	2							1
GO:0006807	nitrogen compound metabolic process	BIOLOGICAL								1
GO:0071704	organic substance metabolic process	BIOLOGICAL								
GO:0034641	cellular nitrogen compound metabolic process	BIOLOGICAL								
GO:0065009	regulation of molecular function	BIOLOGICAL								
GO:0030234	enzyme regulator activity	MOLECULA	2							1
GO:0098772	molecular function regulator activity	MOLECULA	7							
GO:0009607	response to biotic stimulus	BIOLOGICAL								1
GO:0065007	biological regulation	BIOLOGICAL								1
GO:0050896	response to stimulus	BIOLOGICAL								1
GO:0009605	response to external stimulus	BIOLOGICAL								1
GO:0006950	response to stress	BIOLOGICAL								

